
The Design of Current Mode CMOS Multiple-Valued Circuits

Young-hoon Chang Jon T. Butler
Dept. of Electr. Eng. & Comp. Sci.

Northwestern University
Evanston, IL 60208

Dept. of Electr. & Comp. Eng.
Naval Postgraduate School, Code EC/Bu

Monterey, CA 93943-5004

Abstract
We propose an algorithm for ihe design of multiple-
valued current-mode CMOS logic (CMCL) circuiis that
i s based on the cost-fable iechnique. The a1 orithm is
a heuristic search technique AO' algorithm) L O , l l] ap-

Exhaustive Search while providing realizations that are
almost as good. A new cost-table is also proposed ihai
results in better realizations ihan obtained with a previ-
ous cost-table [Id] .

1 Introduction
The development of multiple-valued current-mode
CMOS circuits (ChICL) [3,12,13,14] has resulted in a
need for design techniques for such circuits. The de-
velopment of charge-coupled device (CCD circuits has
inspired a close examination of the cost-ta b le technique
[2,8,9,14,16]. A natural extension of this work is a cost-
table technique for ChlCL [14]. In this paper, we show
an improved cost-table for CMCL. The improvement oc-
curs in two ways. First, the table is extended to include
more operations. Second, an Exhaustive Search tech-
nique is replaced by an efficient search technique which
is similar to AO' algorithm [10,11].
This paper is divided as follows; Section 2 is a descrip-
tion of notation, Section 3 describes the new cost-table
and decompsition method, Section 4 is a description of
improvements obtained, and Section 5 is the conclu-
sions.

plied i o an AND-OR tree. / t is significantly faster ihan

2 Background, Notation and Basic Cir-
cuit Elements

Let R = {O,l,...,r-l} beasetofrlogicvalues, where
r 2 2. Let X = (21 , 22, - , zn} be a set of n variables,
where zi takes on values from R. A function f (X) is a
mapping f : R" + R. If X is a single variable 2, f z) is
represented as an r-tuple, c f(O), f(l), - - . , f (r - \) >.
For example, if r = 4, then f(z) =< 3,2,1,0 > repre-
sents a complement function in which 0 maps to 3, 1 to
2, 2 to 1, and 3 to 0. Let U: be the set of all r-valued
functions of n r-valued inputs. Let c (f) , the cost of func-
tion f, be a mapping c : U: + Ro+, where RO+ is the

tRerearch supported by NATO Grant 423184, by NSF Grant
MIP-8706553, and by an NPS Dmct Funded Grant in cooperation
with the Naval Fbaarch Laboratory.

set of real numbers. The cost function c (f) introduced
by Kerkhoff and Robroek (81 for the design of 4-valued
CCD logic circuits correlates closely with the chip area
occuppied by the most compact implementation of f.
In the realization of a given function by cost-table, cost-
table functions are combined using a connecting oper-
ation. The connecting operation + between functions

value, in which case + is undefined. For example, if
=c 0,1,2,3 > and f 2 (z) =< 3,2,1,0 >, then

tity function < 0,1,2,3 > and the complement function
< 3,2,1,0 > is the constant function c 3,3,3,3 >.
Let s be the cost of realizing the sum operation (+)
between two function:. Thus, the cost of the realization

adders.
Function f is a basis function if and only if f (X) is 1
for exactly one assignment of values to X and is 0 oth-
erwise. Let BT be the union of all basis functions and
the constant 0 function. BT is called the basis cost-
iable. F is a cost-fable if and only if BT E F 5 U',.
The condition BT C F guarantees that all functions
can be realized as the sum (+) of cost-table functions.
Forexample,inUt, B T = {<O,O,O,O>, <0,0,0,1>,

is missing, it is impossible to realize certain functions,
including < O,O,O, 1 > itself. Conversely, any function
c ao,al,a2, a3 > can be realized as the sum of func-
tions exclusively from BT, specifically a0 functions of
the form < 1,0,0,0 >, 01 < O , l , O , O >, 02 < O,O, 1,0 >,
and 03 < 0,0,0,1 >.
C F (~) , th? cost of realizing f EY: with respect to cost-
table F, is the minimal cost re uation, specifically

=< 3,3,3,3 > and fl z)+fi(t) is unde-
rst example shows that t 6 e sum of the iden-

f = ft+f2+ . . * +fm 1s ~ (f i) +c(f2) +
l)s, where the last term 1s the cost of

<0,0,1,0>, <0,1,0,0>, <1,0,0,0>}. If < O , O , O , l >

where c is the cost function. f = f1+f2+.
said to be a minimal cost realizaiion of f,

+fm is

130
CH3009-8/91/0000/0130/$01 .OO 0 1991 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1991 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
The Design of Current Mode CMOS Multiple-Valued Circuits

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We propose an algorithm for ihe design of multiplevalued current-mode CMOS logic (CMCL) circuiis that
is based on the cost-fable iechnique. The a1 orithm is a heuristic search technique AO’ algorithm) L O , l l]
ap- Exhaustive Search while providing realizations that are almost as good. A new cost-table is also
proposed ihai results in better realizations ihan obtained with a previous cost-table [Id].

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Two cost functions are of special interest.

lkansistor Count
This eoet function was introduced in [14] as a measure
of the area in an implementation of a circuit. Area cor-
relates clwely with the number of transistors needed
in the minimal circuit implementation. I t is straight-
forward to calculate given the circuit, and we use it
here. Because the adder uses no transistors, its cost, s,
is 0.
Because it is useful in predicting cost in the AO' algo-
rithm, we also use the following.

Sum Cost
Given f (z) =< z0,z1,-.-,t,-1 >, the sum cod is

SC(f(+)) = 20 + 21 + + t r - 1 -

For example, SC < 1 ,1 ,1 ,1 >) = 4 and
SC(< 3,0,1,2>) = 6 .
The elements in the cost-table of [14 were chosen by

consider here two kinds of logic element sets. One set
includes sum, constant, and mirror, which were used in
[14. The other includes threshold detector logic. In
ad d ition to the set of basic elements in [14], threshold
detector logic in [5,6,17] and their modifications are also
used.

analyzing many CMCL circuits [5,6, 1 2,13,14,17]. We

Sum. The simplest operation in the current d e
main is arithmetic addition. The sum is the only
connective operator in the set of basic circuit el+
ments. The circuit realization of the sum, as shown
in Fig. 1, is sim ly an interconnection between all
the inputs and t\e output.

Constant. The second basic element is the con-
stant generator, as shown in Fig. 1. It can p r s
vide any ositive or negative integer value between
Mr a negafive logic value) and (r - l) , where
r denotes the radix. A negative logic value, i, repre-
sents a logic value corresponding to the same quan-
tity of current that is represented by i , except that
the flow is in the opposite direction. The circuit of
a constant generator consists of one or more MOS
N-ty e transistor(s) or P-type transistor(s). The
gate&) of the transistor(s) are connected to a ref-
erence voltage, which can be generated locally.

N-type and P-type mirror. The mirrors are
one-input , multiple output logic operators of which
there are two kinds, an N-type and a P-type. The
mathematical functions bndp (bound-positive and
bndn (bound-ne ative) are used in the alge b raic
representation of these mirrors. They are defined

bndp(z) = "(0, z)
bndn(2) = min(0, z)

For example, if the input strin with component x
is { 3 2 I 0 1 2 3 }, the string o%tained by applying

as:

bndp(z) and bndn(z) is 0 0 0 0 1 2 3 } and { $210
are shown in Fi 1. Multiple copies of the out-
put sign& are &tained by using separate output
transistors. Multiplication of the output s' nals by
an integer is obtained by connecting the gains of
several identical output transistors together.

0 0 0 }, respectively. T 6, e circuits of these mirrors

There are two kinds of threshold detector circuits.
When input z is m or greater, one produces z at the
output, while the other produces a constant c. When z
is less than m, both kinds produce 0.

e Threshold detector. A voltageswitched cur-
rent source threshold detector can be implemented
with a constant generator and a pass-transistor, as
shown in Fig. 1. A threshold detector with con-
stant generator was designed with those basic el-
ements in [5,17]. Fig. 2a shows a circuit that is
identical except for the addition of a current mirror
to invert the input current direction. Considering
Fig. 2a, the operation of the threshold detector is
as follows: if the control input current z in the up-
per side of the box in the symbol diagram of Fig. 2
is smaller than or equal to the threshold m, the out-
put current is 0. On the other hand, if the control
input current g is greater than m, the gate output is
connected by pass-transistor T1 to a current source
T2. In Fig. 2b, however, T 2 produces the value
i". The function realized is defined as

constant c or input z

0 otherwise.

6 The cost Q (f) of TD(m, e) Fig. 2.a) is 2 + m -+
c. The 2 occurs because t ere are 3 transistors
of cost 1, one of which is shared with other cost-
table functions (the P-type input transistor). The
m occurs because the transistor in Fig. 2.a labeled
m occupies m times the area of each of the three
transistors discussed above. The c occurs because
of the transistor in Fig. 2.a labeled by c. The
cost of TD(m, z)(Fi . 2.b is 5 + m. There are six
transistors of size 1 (!ncluding T1 and T2 of which
one, the input transistor, is not counted i ecause it
is shared with other cost-table functions. The m
occurs because of the transistor labeled m in Fig.
2.b.

e Modified threshold detector. From the above
threshold detector, a modified threshold detector,
as shown in Fig. 1, was used in [SI. This is defined
as

constant c or input z

0 otherwise.
MTD(m1, m2,z)

a The cost of MTD(m1, m2 : c is 4 + m l + m2 + c.
The 4 occurs because of the transistors of size 1
shown in Fig. 1 and 2 additional transistors (not
shown) needed for the current mirror. Again, one of

131

I circuit
Realization

Arithemotlc
Summator

q-x+y+. . .+z

Constant

Llq Llr 4t$E N-type
Mirror

xl=bndn (x)

r--Nxl
q=-Mx'

xl=bndp (x)
q=-ux,
r--Nx'

P-t ype
Mirror

t l q t l r

ZdL Threshold
Detector

Modified
Threshold
Detector

MTD (ml , m2 : c:

Inverse
Threshold
Detector

ITD(m,c)

Figure 1: The basic set of CMCL circuit

constant value "c" or 5 + m for ZTD(m, z) with the
pass-transistor.

these is not counted because it is shared with other
functions. Similarly, the cost of MTD(m1, m2 : z)
can be calculated as 7 + m l +m2. The operation of
the modified threshold detector logic is same as the
literal generator and is useful in implementin the
Universal Unary Programmable Circuit(UUP6) or
T-gate, and Programmable Logic Arrays(PLAs).

0 Inverse threshold detector. The inverse thresh-
old detector or down-literal enerator operates as
the inverse operation of threkold detector. It can
be implemented as a modification of the threshold
detector and is defined as

Its symbol and circuit dia am are shown in Fig.
1. The cost Q(f) of I T D g , c) is 3 + m + c with

3 The Proposed Cost-table Technique
In this section, a cost-table design algorithm is shown
which yields improved realizations over a previous a1 o-
rithm. The improvements are due to insi ht gainedgby
an operation called Vertical Partitioning &P).

3.1 Cost-table circuits
The circuit structure of CMCL cost-table functions con-
sists of three parts ([14]); a distribution circuit for the
input, circuits that reahze the cost-table functions, and
an output summator circuit.
Cost-table functions in [14] were realized using the cir-
cuits shown in Fig. 3.a and 3.b. We augment the
cost-table in [14] with functions that can be realized

132

T2

vss

Figure 2: The operation of threshold detector logic

Figure 3: Cost-table circuit structures

using a multiplication. For example, instead of just
< 0,0,0,1 >, we choose to include < 0,0,0,2 > and
< O,O, 0,3 > also. Table 1 shows the au mented cost-
table. This increases the cost-table size t o m 37 to 53.
Although the cost-table size is increased by more than
40%, the algorithm is simplified using this cost-table.
A further improvement can be obtained by using the
threshold operations explained in the previous sec-
tion. Specifically, the threshold detector TD(m, c) and
TD m , z) M T D ml m2,c) and M T D ml ,mz,z) , and

improvement in certmn costs in Table 1. The resulting
cost-table is shown in Table 2. As with Table 2, this
table lists the circuit structure type, the values of the
parameters, the cost, and the values of the cost func-
tions.
In CMCL, the area of the circuit correlates closely with
the number of transistors. As in the studies of CCD, it
is of interest to compare the eosts of functions obtained

IT 6 (m,c) and IkD(m,t) are used. T 6 is results in an

Table 1: Cost-table with the circuits of Fig. 3a(circuit
a), 3b(circuit b).

4
6
0
0
T
r
T
7
T
0
0
0
0
0
0
0
s
9
9
9
9
9
9
9
e
10
10
10
10
IO
10
IO
10
I1
11
I1
I1
I1
11
I2
I2

I1
I3
13
w
w
w
I4
I4
IT

ia

-

0111
0 0 1 1
D O 0 1
1 0 0 0
0 0 0 1
D l 1 1
1100
1100

1000
1 1 1 0
1 2 1 0
0 1 1 1
0 1 0 0
a 1 0 0
0111

J I O O

0 0 1 1
0 1 1 1
1 1 1 0

oooa

a o o o

3 3 1 0

a a o o
i a a o
o a o o

a i a o

0 5 3 3
0 3 0 0

0 1 1 0
0 0 1 0
0 1 1 0
0 1 1 0

0 0 1 2
0 1 3 3
1 1 1 0
0 0 3 3
0 1 2 0
0 0 2 0

0 3 1 1

i a o o

o i a i

i a a o
i a i o
o a a o
0 0 2 1
0 1 J 1
0 3 1 0

0 0 3 0

I110
0 0 3 1

i a o o
o i a o

-

-
KIO L l ul
K-1 k-1-1
K = l M r l

K I O l p l k-1 bl ul b=O
K r l k d r l

K r l Lo k-1 bl -1 k l
K s l L-1 M Irl -1 b 4
K I O L-2 h l bla-1 b-0

K d td rl
K-0 L-I L l l-1 r l b=O
K s I Ipl k r l l-I r l brO
K s l W k=l bl -1 b-0
K r l Lo k=l bl -1 k l
K r l Lo k r l l-1-1 bil
K c I l p l k=l IrI rl b=O
K r l Iro k r l l-1-1 k l
K I O L-I k=I 1 4 rl b d
K I O Ira k d Irl rl b+O
K c l Ips k=lI= l a r l biO
K r l Lo1 k=l l-1-1 k l
K r l Lo k=¶ bl u l b-1
K s l b l k r t k l a i l b r l
K s l L--I k -1 1-3 ail b=O
K s I I p l k 1 I=¶ rl b d
K r l l r O l ' ~ I r l r l k l
K r l L-0 k-1 Ira -1 b=l
K r l Lo L r I I d arl k l
K 5 I Ipl k r l b3 rl bra
K r 5 Lo k=I bl a 4 b=l
K r l b l k r t I r l a r l bsl
K d Lo k-3 111 a-I k l
K r l lrO k-3 I r l a r l b=l
K s I G . 1 k-5 bl rl b=l
K r 3 L=l k=lI=I -1 b=l
K r l Irl k-1 111 arl b=l
K s l b l krS lrl a=l b=l
K r l Irl k = I l r 3 r l k l
K r 5 b o k-1 bl r l b r l
K r l I,-I k=l b 2 -1 b r l
K s l Irl k J 111 -1 b=2
K r l IrO k-4 Irl rl b-3
K s l b - 1 k-4 1-1 ul brl
Ksl b l k-4 bl arl b=l
K r 5 IrO k=l b S -2 bil
K r I IrI k I) bI rl brl
K - I Irl k-4 1-1 rl brl
K-I IrO k-S I r l - 1 b-J
K s l I r - Y k 3 Irl u l bel

K-1 Irl k=S 111 ul k l
K-I Ir-1 LrI bl .J brl
K r I b 3 k=S bI ul b i 3

K-S hi k t a h a ~i boi

from a rigidly specified table of costs to costs derived
dir-ectly from the functions themselves, that is, costs
of four previously defined cost functions TC [16], TTS
[16], SUM [16], and BC [l]. We do the same in this
study.
For the decomposition program, it is interesting to know
how the transistor counts of the cost-table functions
and the mathematical cost functions are related to each
other. Table 2 also lists the relations between the
TTS, SUM, BC, and TC cost functions and transistor
count Q for the functions in the cost-table in [14]. For
the iven functions, the mathematical cost functions are
fixe%. Therefore, the values of the mathematical cost
functions are not duplicated in Table 1.
As seen in [20 for all cost-table functions, TTS < 7,

add the threshold detector logic circuits as basic circuit
elements, the correlation between the cost Q and the
mathematical cost functions is weak as shown in Table
2. Because of this negative correlation, these cost func-
tions are not useful in a direct way to realize a function
by the cost-table technique. However, one, the SUM, is

SUM < 10, BI C < 4 and TC < 2. Even though we

133

Table 2: Proposed Cogt-table for Cvalued CMCL func-
tions with the circuits of Fi . 3a(circuit a), 3b(circuit
b), 3c(circuit c), 3d(circuit d? and 3e(circuit e).

-

01

03
04
05

OT
00
09
10
11
11
13
14
15
16
I7
18
19
20
11
11
a3
14
16
w)
17
m
29
5,
31

SJ
34
36
38

m

on

sa

a7
38
39
40
41

42
U
44
45
46
47
48
49
60
I I
sa -

3.5
4

4.5
4.5
6

S.5
6.S
IS
6

8.5
8.5
6.5
8.K
7
7
7

7.6
7.5
7s
8
8
8
8
8

8.5
8.S
0
0
0
o
0
0
0

0.1
IO

IO
10
IO
10

10.5

11
11
I2

I2
13
13
13
15
14
I4

i a

-

x
1 1 1 1
0 1 1 3
0 1 1 1
0 0 1 1
0 1 1 1
0 0 1 1
0 0 0 1
0 5 3 s
0 0 1 1
1 0 0 0
0 0 0 1
1 0 0 0
1 1 0 0
0 0 3 3
0 0 1 3
0 0 0 3
0 1 0 0
1 1 0 0

1 1 0 0
1 1 1 0
2 1 1 0
0 1 1 1
3 1 1 0
0 1 1 0
0 1 0 0
3 3 0 0
1 1 1 0
3 1 0 0

0 1 1 1
1 1 1 0

O O l O
0 3 0 0
3330
0 1 1 0

0 1 1 0

0 0 1 0
o s 1 0
1 1 3 0

2 3 1 0
003a

0 3 1 1
I 3 1 0
0 0 1 1
0 1 3 1

a o o o

a s t o

o l i o

i a o o

0 1 3 1

o s i o
i 3 o a
o i 3 a
i l i a -

KrO k=l .rl

K r l k-1 .=I
TD(O.5,l)
TD(lI.1)

K=1 La1 rrl
To(O.6.3)
TD(l.S.1)
m q 0 . I . l)

TD(O.6.I)

K=Z k=1 rcl
ITD(O.I.2)
mD(1.K.I)
TD(l.I.3)

KrO k=l rl ud TD(l.5.x)
K=1 k=5 r l
HTD(O.5.1.5:l)

K=O ILl k=l In1 a r l b=O
mD(0.6.3)
ITD(1 .SJ)
ITD(l.S.1)

k=11=1 e - 1 b=l
k r l Is1 GI brO

'D(O.S.2 %I)

TDII.63)
'qo.S,l.5*)

K-1 L+-l kr21-1 .=I brl
hITD(O.52 S.1)
bITD(l.S.2 5.1)
HTD(O.5.I .I J)

ITDO 6.3)

useful indirectly, as we show later.

;
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
1
1
1
1
1
0
1
1
I
1
1
I
1
1
1
1
1
1
I
1

I
1
I
1
1

I
1
1
1
1
1
1
1
1
I
I -

!!
b
a
a
I

1
1
1

1
1
1
4
1
a
a
a
3
6
1
1
1
1
4
1
4

1
S

3
3
4
1
6
3
4

4
3
4
e
6

4
e
4
S
S
a
s
6
5
8
3

a

a

a

a

-

0
a
a
6
1
1
0
4
1
1
a
2
8
5
3
1
3
3
4

s
6
6
1
1
8
8
4
7
4
4
4
1
3
0

a

a

3
3
1
e
6

6
3
6
8
I
s
6
4
4
4
5 -

g
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
1
1
1
I
I
0
3
1
1
1
I
1
1
I
1
1
I
I
I
I

1
1
1
1
I

1
1
1
1
1
1
1
1
1
I
I -

3.2 The proposed cost-table decomposition

The addition of the threshold detector logic to the ba-
sic logic in [14] allows functions to be generated with
less cost than without this logic. Fig. 4 shows how the
various functions in the two cost-tables are distributed.
Data points in boxes indicate number of functions from
the old cost-table (Table l) , while data points in x's in-
dicate number of functions from the new cost-table (Ttc
ble 2). The lower cost of the new cost-table is shown by
the grouping of x's to the left of the boxes. However,
the increase in the functions of the cost-table renders
the direct application of the existing decomposition al-
gorithms difficult, because the decomposition algorithm
searches the cost-table at each step. An analysis of the
functions in the cost-table reveals the following:

algorithm.

Number of Functions
10

8

6

4

2

0

P

0 2 4 6 8 1 0 1 2

Cost of Function

L
14 16 18

-B- cost-table Table 1 * cost-table Table 2

Figure 4: Comparison of the cost functions in the cost-
tables

0 Constant functions are the least expensive func-
t ions.

0 Monotonously increasing functions (stair-case func-
tions) such as < 0,1 ,2 ,3 >, < 0,0,1,2 >,
< 0,0,0,1 >, < 0,1,2,0.>, < 0,1 ,0 ,0 > and
< 1,2,?,0 > can be obtained at moderate cost.

0 -All step-up functions (e.g. < 0,0,2,2 >) and all
step-down functions (e.g. < 2,2,0,0 >) are in the
table.

0 Most functions like < xo,x1,0,0 > and
< 0,0,22,23 > are in the cost-table, where
~ 0 , ~ 1 , ~ 2 , ~ 3 are any values in radix 4 (i.e. 0,
1, 2 and 3). The exceptions are < 0,0,3,2 >,
< 2,3,0,0 >, and < 3,2,0,0 >.

The following definitions are useful in fomulating the
decomposition method. We allow the radix r to take on
any value, and so we consider general r-valued unary
functions f(z) =< zo,xl , - - - ,zr - l >.
Definition 1: Let i,,, be the smallest index i such
that ti = 0 and # 0. i,,, is said to be the right-
most internal 0 of f 2). If no Zi is 0 or the only 0's
extend consecutively \ rom i = r - 1 to lower values, the
rightmost internal 0 does not exist.
Example: The functions < 1,3,0,1 >, < 2,0,0,3 >,
and < O,O,O, 1 > all have a rightmost internal 0 at

134

i = 2. The leftmost internal 0 is defined in a similar
manner. However, we do not make use of it here.
Definition 2: If j is the index of the rightmost internal
0, then LF(x) = < t o , t 1 , -+ . , zj-1,0,. - - , O > is the lefl
function and R F (t) = < O,...,O, tj,tj+i,*-*,tr-i >
is the right function.
Example: Forthefunctions<1,3,0,1>,< 2,0,0,3 >
and < 0,0,0,1 >, L F (z) =< 1.,3,0,0 >,*< 2,0,0,0 >,
and < O,O,O,O >, respectively, while RF(r) is
< 0,0,0,1 >, < 0,0,0,3 >, and < 0,0,0,1 >, r e
spect ively.
These concepts are useful in decomposing a given func-
tion into two subfunctions. That is, the algorithm
shown later accepts a function f (t and attempts to
decompose it into two subfunctions 1 F (z) and RF(t).
Definition 3: f (z) =< c, c, . , c > is a constant func-
tion for 0 < c 5 r - 1.
Example: < 1 , 1 , 1 , 1 >, < 2,2 ,2 ,2 >, and
< 3 , 3 , 3 , 3 > are the three constant functions for
4-valued unary functions.
Definition 4: f (z) =< z 0 , ~ 1 , ~ ~ ~ , t r - l > is an up-
staircase (down-staircase) function if f(z) is not a con-
stant function and zi = bndp(i - c), for 0 5 c 5 r - 2
(ti = bndp(c - i), for 1 5 c 5 r - 1). f(z) is a stair-
case function if it is either an up-staircase function or a
down-staircase function.
Example: < 0,1,2,3 >, < 0,0,1,2. >, and
< 0 , 0 , 0 , 1 > are upstaircase functions, while
< 3 , 2 , 1 , 0 >, <2,1 ,0 ,0>, and < 1 , 0 , 0 , 0 > are
down-staircase functions.
Definition 5: f(t) =< z0,z1,.-.,t ,-1 > is a partial
upstairrase (par t ia l down-staircase function), if f (z) is
not a constant function, and ti = bndp(i - c) for 0 5
0 5 i < m (m 5 i 5 r - 1) and t i = 0 for m < i
i < m ~ w h e r e m ~ c t l (m < c - l) . f z) isapart ia whereJ c 5 r - 2 (ti = bndp(c - i) , for 1 5 c 5 r - 1),

staircase function if it is either a partia \ up-staircase
function or a partial down-staircase function.
Example: < 0,1,2,3 >, < 0,0,1,2 >, < 0,0,0,1 >,
< 0,1,0,0 >, < 0,1,2,0 >, and < 0,0,1,0 > are
partial upstaircase functions, while < 3,2,1,0 >,
< 2 , 1 , 0 1 0 >, < 1,0,0,0 >, < O) O) l , O >,
< 0 , 2 , 1 , 0 >, and < 0,1 ,0 ,0 > are partial
down-staircase functions.
Definition 6: f(t) =< t O , t l , ~ - ~ , t r , l > is a block
function iff ti = c for imin 5 i 5 i,,, and ti = 0
for i < imin and i,,, < i , where 1 5 c 5 r - 1 and
0 5 imin < i,,, 5 r - 1, such that imin and i,,, are
not 0 and r - 1 simultaneously.
Example: When r = 4, there are 15 block functions
< o l l l l l l < o121212 < 0,3 ,3 ,3 >, < o , o l ~ l ~ >,
< 0,0,2,2 >, < 0,0,3,3 >, < 0,1,1,0 >, < 0,2,2,0 >,
< 0,3,3,0 >, < 1,1,0,0 >, < 2,2 ,0 ,0 >, < 3,3,0,0 >,
< 1 , 1 , , 1 , 0 ~ , <2 ,2 ,2 ,O>,and<3,3 ,3 ,0>.
In the algorithm described next, a given function f(z)
is tested to determine if a nonzero constant function
can be subtracted from it. Next, an internal 0 is sou ht
and the corresponding right and left functions RF$t)

and L F (z) are extracted. These are then decomposed
further.
This process is performed using an AND-OR tree. From
certain nodes, there are AND arcs which lead to two
or more nodes, all of which must be solved to solve
the @veri node. Alternatively, if a node has OR arcs
leading to two or more nodes, only one of those nodes
must be solved in order for the initial node to be solved.
This algorithmic process is similar to the well-known A'
algorithm [4]. But specifically we use the tree structure
of the AO' algorithm [lO,llj to find solutions in the
AND-OR tree, and our terminology is similar to that
of [15]. The algorithm described here finds a path from
the startin6 node to a set of nodes representing the cost-
table functions.
The proposed Vertical Partitioning algorithm (VP) pro-
ceeds by searching an AND-OR tree [15]. In this tree,
nodes represent functions. As the search proceeds, cost
estimates are generated at each node. These estimates
are updated as more information is gathered in the
search and, in turn, are used to direct the search to-
ward productive paths.
Vertical Parti t ioning Algorithm

1 . Let the initial AND-OR tree consist only of the
node representing f = f(t), which is called IKIT.
Set this node's cost, Q (f) , to CO, and denote this
level as 0.

2. Generate levels 1, 2, ... and thus the AND-OR
tree(A0-tree until all leaves become a cost-table
function or kUTILITY. The AO-tree has AND
node(s) on levels of odd value and has OR node(s)
on levels of even value. The algorithm proceeds un-
til INIT is labeled SOLVED. Repeat the following
operation at each level until all leaves generated are
marked SOLVED or FUTILITY:

a. At each AND node function f, i.e., level 0,
2, 4, ... , let e be the rightmost internal 0.
If e exists, partition f into two subfunctions
fl and f 2 , where f1 is the left function(lF)
and fi is the right function RF) of f. If z

TILITY, which is equivalent to specifying the
AND node as not partitioned. Form the AO-
tree nodes f 1 and f2. If f1 or f 2 is in the cost-
table, mark the corresponding node SOLVED,
and assign it the Q value of the function's cost
from the cost-table. If fl or f2 is not in the
cost-table, do the following:

b. At each OR node function, f, level 1, 3, 5,
... enerate a component function f' of
f ofltfe following three types 1. a partial
staircase function(assi ned to the left-hand
ORsucceasor), 2. a bfock function(assigned
to the middle Obucceasor), and 3. a non-
eero constant function assigned to the right-

tion f has the property that 1. f' is in the
costtable, 2. f (2) 5 f (t) for 0 5 t 5 r - 1

does not exist, let f1 = f, an 6 mark f i as FU-

hand ORsuccessor). B ach component func-

135

3.

3.3

in radix t , and 3. there is no other compe
nent function of the some type with a larger
SUM cost function. Furthermore, among the
choice8 of component functions with the same
largest SUM cost, select the one with the low-
est Q(cost-table cost). If no function of any
of the three types of functions can be sub-
tracted, the corresponding ORsuccessor node
is marked FULTILITY. Next ,

i. choose the arc associated with a compe
nent function, f', that has the lowest Q
value.

ii. generate the ORsuccessor by subtract-
ing the corresponding component func-
tion from the OR node function.

iii. if the ORsuccessor is found in the cost-
table, label it SOLVED and assign its Q
value from the cost-table.

iv. depth first recursion: If an ORsuccessor
cannot be found in the cost-table, re-
Deat the above AND/OR decomoosition
tntil all successive liaves are mirked as
SOLVED.

v. backtrack: When a node status changes
to SOLVED and its cost changes, its par-
ent node cost is re-evaluated to determine
if a lower cost can be assigned to the par-
ent node.

vi. repeat Steps 11) to (iv) for other

component functions are less than the
cost of the OR node found from
the completed evaluation of the first
ORsuccessor.

Besides the decompositions considered in Steps 1
and 2 above, which are based on vertical partitions
about the leftmost internal 0, consider other ver-
tical partitions. Compute the cost of all vertical
partitions of the given function, as it is decomposed
intosubfuctions < 20 , 21 , , ti , 0, . - , 0 >
a n d < 0 , ... , 0 , ?i+l , , >,where
both subfunctions are in the cost-table(if either one
or both are not in the cost-table, discard the com-
position). There are r - 1 such decompositions.
From among these decompositions and the decom-
positions chosen in Steps 2 and 3, choose the one
with the lowest cost.

ORsuccessors i r" the Q values for their

Examples
Fig. 5 shows two examples of the Vertical Partitioning
algorithm.
Example: Fig. 5a shows how < 3,0,2,3 > is de-
composed with the cost-table shown in Table l. At
level 0, this function is partitioned into < 3,0,0,0 >
and < 0,0,2,3 >. hnction < 3,0,0,0 > is in the
cost-table and is therefore marked SOLVED, with a
cost Q = 8. Since the other function < 0,0,2,3 >
is not in Table 1, it is decomposed as < O,O, 1,l >
or < O,O,O, 1 > by subtracting the staircase function

f' =< 0,0,1,2 >, with a cost Q(f') = 4 or the block
function f' =< 0,0,2,2 >, with a cost Q(f') = 10.
Because it is not possible to subtract a non-zero con-
stant, the corresponding node is marked FUTILITY.
Both < O,O, 1,1 > and < O,O, 0,l > are cost-table func-
tions and the minimal realization can be obtained as
< 3,0,0,0 > + < 0,0,1,2 > + < 0,0,1,1 > with a
total cost of 21.
Example: Fig. 5b shows the realization of < 3,2,1,1 >
with the cost-table shown in Table 2. Since < 3,2,1,1 >
contains no leftmost internal 0, there is no partition
at level 0. Thus, the left function is marked FUTIL-
ITY and consequently the right function is a copy of
parent node function. Next generate three potential
component functions < 1,1,1,1 >(constant function),
< 2,2,0,0 > (block function) and < 3,2,1,0 > (stair-
case function) with costs 1, 7.5 and 8, respectively.
First, < 3,2,1,1 > is decomposed as < 1,1,1,1 > +
< 2,1,0,0 > at the right-hand ORsuccessor, since its
cost is the lowest among the component functions at its
tree level. Node < 2,1,0,0 > is marked SOLVED be-
cause it is a cost-table function at a cost Q = 7. At
this point, one solution is found with the total cost 6
by summing Q(f') = 1 with Q = 7. Next, test the
next lowest component, i.e., the middle ORsuccessor.
Here, OR node function < 3,2,1,1 > can be decom-
posed as < 2,2,0,0 > + < l,O,l,l > , the latter
of which can further be partitioned into < 1,0,0,0 >
and < O,O,l,l > (since < l,O,l,l > is not a cost-
table function). Both < 1,0,0,0 > and < O,O, 1,l >
are cost-table functions and are marked SOLVED with
cost Q = 5.5 and Q = 4.5, res ectively. Now that
the middle ORsuccessor is solveg. The total cost for
this path is calculated by summing the cost Q for
< 1,0,0,0 >, < 0,0,1,1 >, and < l,O,l,l > for a
total cost larger than the solution already solved for the
right-hand ORsuccessor. Therefore, the solution for
the middle ORsuccessor is discarded. The remaining
left-hand ORsuccessor can also be discarded, since its
total cost will surely be greater than cost of the com-
ponent function, < 3,2,1,0 >, which is 8. Thus, the
solution is < 1,1,1,1 > + < 2,1,0,0 > with a cost
Q = 8 .
Example: In [14], < 1,3,0,3 > is realized at a cost
Q = 24 using < 1,0,0,0 > and < 0,0,1,0 > with a
multiplication factor of 2 and 3 respectively followed by
complementation with respect to a constant 3. With the
cost-table shown in Table 1 presented here, it is realized
at a cost of Q = 20 as shown in Fig. 6.
Example: Using the cost-table of Table 2, the Vertical
Partitioning algorithm decomposes < 0,2,3,2 > into
< 0,2,2,2 > and < 0,0,1,0 > at a cost of Q = 13.5.
However, the Exhaustive Search algorithm decomposes
< 0,2,3,2 >into < O,l,l,l > and < 0,1,2,1 > at a
cost of 12.5, which is better than that produced by the
Vertical Partitioning algorithm.

4 Overall Comparison Results
An exam le in the revious section shows that the re-
sults of tRe Verticaf' Partitioning me sometimes worse
than Exhaustive Search. In this section, we further

136

C l 0 0 0 ,
Q-0 DOLMD

(0 0 1 l>
0-0 COLVBD 9-5 DOLMD

Algorithm CPU T ime (sec.) Relative Duration '
Cl 0 1 1, (2 1 0 0,

Q-7 COLVED VP 19.3 1
96.6 w 5

FUTILITY c3 2 1 l*

I - 1 I I

Figure 6: f(z) =< 1,3,0,3 >

b) nations of four cost-table functions. We have verified
that the cost-table implementation EX(3) is the same
as Exhaustive Search. These observations hold because

we didn't need to run EX(4). Therefore, the CPU time
for EX(4) is an estimate in Table 3.

Figure 5: Examples of the application of the vertical of the increased size ofthe cost-table to 53. As a result, partitioning algorithm

quantify the performance of the two algorithms. Fig.
7 shows the result of applyinz the Vertical Partitioning 5 Conclusions _ - - -
algorithm to 255 Cvalued unary functions using tw;
cost-tables, that of Table 1 and Table 2. Plotted verti-
cally is the number of functions with a minimum cost of
realization shown along the horizontal axis. Data points
in boxes represent the cost-table of Table 1, while data
points marked by x's correspond to the cost-table shown
in Table 2. For example, the box at (4,l) means there
is one function realized at a cost of 4 using the Vertical
Partitioning algorithm on the cost-table of Table 1. The
advantage of the cost-table of Table 2 is clearly seen as a
bulk of the new cost-table histogram is to the left of the
bulk of the old cost-table histogram. The average cost
over all 255 functions is Q=12.1804 with the cost-table
of Table 2 compared to Q=13.6039 with the cost-table
of Table 1. A similar experiment was performed using
the Exhaustive Search algorithm on the cost-table of
Table 2. The cost-tables of Table 2 and Table1 yielded
an average cost of Q=12.1235 and Q=13.5686, respec-
tively. Table 3 shows the computation time of Vertical
Partitioning algorithm as it compares to the Exhaus-
tive Search. That is, the Vertical Partitioning alg6
rithm required 19.3 sec. of CPU time to comDute the

We have proposed the Vertical Partitioning algorithm
for the design of current-mode CMOS multiple-valued
logic. It partitions a given function according to the
location of logic 0's. The algorithm requires search
and proceeds in a manner similar to the heuristic
algorithm(A0'). In addition, the cost-table of Table
2 is proposed in which threshold detector logic circuits
augment operations used in a previous cost-table. The
cost of realizing functions using the cost-table of Ta-
ble 2 is about 10% less than with Table l. That is,
using the Vertical Partitioning algorithm, the average
cost over 255 4-valued functions was Qd2.1804 for the
cost-table of Table 2 verses Q=13.6039 for the cost-table
of Table 1, a reduction of 11.7%. The new algorithm
does not achieve the performance of Exhaustive Search
which finds a guaranteed minimal solution. However,
it is not far off, only 0.0047%(calculated from the total
cost difference between Vertical Partitionin algorithm
and Exhaustive Search divided by the t o t 3 cost from
Exhaustive Search for all Cvalued 255 functions) and it
is faster.

minimal iealization of all 255 4-valued unary finctions.
This is five times faster than EX(3) which is Exhaus-
tive Search for the minimal solution over all combina-
tions of three cost-table functions. It is 265 times faster
than EX(4) which is Exhaustive Search over all combi-

An advantage of the Vertical Partitioning method is
that it is easily extended to higher radices in a nat-
ural way. We expect this, because functions like the
constant ard staircase will be relatively inexpensive in
higher radices as well.

137

26 umber of Functions ,

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Cost of Function

-E+ with Table 1 * wllh Table 2

Figure 7: Comparison of 255 4-valued unary functions
in two cost-tables

References
(11 M.H. Abd-El-Barr, Z.G. Vranesic, and S.C. Zaky,

“Synthesis of MVL functions for CCD implementa-
tions,” Pmc. of the 16th Inter. Symp. on Multiple-
Valued Logic, pp. 116-127, May 1986.

[2] M.H. Abd-El-Barr, T.D. IIoang, and Z.G. Vranesic,
“The incremental-cost approach for synthesis of
CCD 4-valued unary functions,” Pmc. of the 18th
Inter. Symp. on Multiple-valued Logic, pp. 82-89,
May 1988.

[3] D.A. F’reitas and K.W. Current, “A quaternary
logic encoder-decoder circuit design using CMOS,”
Proc. of the 13th Inter. Symp. on Multiple-Valued
Logic, pp. 190-195, hfay 1983.

[4] P.E. Hart, N.J. Nilsson and B. Raphael, “Correc-
tion to ’A formal basis of the heuristic determin+
tion of minimum cost paths’,” SIGART Newsletter,
Vol. 37, 1972.

(51 M. Kameyama, T. Sekibe and T. Higuchi, “De-
sign of highly parallel residue arithmetic circuits
based on multiple- valued bidirectional current-
mode MOS technology,” Pmc. of the 18th Inter.
Symp. on Muhiple-Valued Logic, pp. 6-13, May,
1988.

[6] T.S. Kawahito, M. Kameyama, T. Hi chi, and H.
Yamada, “A high-speed compact mugplier based
on multiple-valued bi-directional current-mode cir-
cuits,” Pmc. of the 17th Inter. Symp. on Multiple-
Valued Logic, pp. 172-180, May 1987.

[7] H.G. Kerkhoff and M.L. Tervoert, “Multiple-
valued logic charge coupled devices,” IEEE Dam.
on Comp., vol. G30, no. 9, pp. 644-652, September
1981.

[8) H.G. Kerkhoff and H.A.J. Etobroek, “The lo ic de-
sign of multiple-valued logic functions using ctarge-
coupled devices,” Pmc. of the l t t h Inter. Symp. on
Multiple- Valued Logic, pp. 35-44, May 1982.

[9] J.K. Lee and J.T. Butler, “Tabular methods for
the design of CCD multiple-valued logic,” Proc. of
the 13th Inter. Symp. on Multiple- Valued Logic, pp.
162-170, May 1983.

[lo] A. Martelli and U. Montanari, “Additive And/or
graphs,” Proc. of IJCAI 3, 1973.

[ll) A. Martelli and U. Montanari, “Optimization de-
cision trees throu h heuristically guided search,”
Communication ofthe ACM, Vol. 21, No. 12, 1978.

(121 S.P. Onneweer and M.G. Kerkhoff, “Current-mode
high-radix circuits,” Pmc. of the 16th Inter. Symp.
on Multiple- Valued Logic, p p . 60-69, hlay 1966.

[13] S.P. Onneweer and H.G. Kerkhoff, “High-radix
current-mode CMOS circuits based on the
truncated-difference operator,” Proc. of the 1 ?!h
Inier. Symp. on Multiple-Valued Logic, pp. 168-
195, May 1987.

[14) S.P. Onneweer, H.G. Kerkhoff, and J.T. Butler,
”Structural computer-aided design of current-mode
CMOS logic circuits,” Proceedings of the 18th In-
temaiional Symposium on Muliiple- Valued Logic,
pp. 21-30, May 1988.

[15] E. Rich, Ariijictal Intelligence, McGraw-Hill 1983.

[IS] K.A. Schueller, P.P. Tirumalai, and J.T. Butler,
“An analysis of the costtable approach to the de-
sign of multiple-valued circuits,” Pmc. of f h e 16th
Inter. Symp. on Multiple- Valued Logic, hiay 1986,

[17] T. Yamakawa, “CMOS multivalued circuits in hy-
brid mode,” Proc. of the 15th Inter. Symp. on
Multiple- Valued Logic, pp. 144-151, May 1985.

pp. 42-50.

138

